In this text, extension and utility to variably-saturated wetland circumstances of a process-based wetland mannequin, specifically WetQual is demonstrated. The new mannequin described in this text is an improved model of an earlier mannequin, which was solely able to capturing nutrient dynamics in constantly ponded wetlands.
The upgraded mannequin is able to simulating nutrient biking and biogeochemical reactions in each ponded and unsaturated zones of the wetland. To accomplish this objective, a complete module for monitoring water content material in wetland soil was carried out in the mannequin, and biogeochemical relationships have been added to elucidate biking of nitrogen (N) and carbon (C) in variably saturated zones of wetlands.
The developed mannequin was utilized to a small, restored wetland receiving agricultural runoff, positioned on Kent Island, Maryland. On common, in the course of the two yr examine interval, the ponded compartment of the examine wetland coated 65% of the full 1.2 ha space.
Modeling Nitrogen and Carbon dynamics in wetland soils and water using a mechanistic wetland model.
Through mass stability evaluation, it was revealed that the mass of nitrogen misplaced to denitrification on the variably saturated compartment of the examine wetland was about Three occasions larger than that of the ponded compartment (32.7 ± 29.Three kg vs. 9.5 ± 5.5 kg) whereas ammonia volatilization on the variably saturated compartment was a fraction of that of ponded compartment (1.2 ± 1.9 kg vs. 11.3 ± 11.eight kg). Sensitivity evaluation confirmed that biking of carbon associated constituents in variably saturated compartment had excessive sensitivity to temperature and out there soil moisture.
Description: Digoxigenin-11-UTP has been used for labeling RNA probes for in situ hybridization and other purposes. DIG-11-UTP is a substrate for T7, SP6 and T3 RNA polymerases* and can replace UTP in in vitro transcription for DIG-labeling of RNA in a ratio of 35%: 65%.
Description: Digoxigenin-11-ddUTP can be used as a substrate for: Terminal Transferase, DNA polymerase I (holoenzyme and Klenow fragment), T4 and T7 DNA polymerase or Taq DNA polymerase and reverse transcriptase (e.g., Transcriptor).
Description: Please reffer to the technical data sheet for more detail information for this item. Our dedicated team would be happy to assist you via live chat, email or phone.
Description: Please reffer to the technical data sheet for more detail information for this item. Our dedicated team would be happy to assist you via live chat, email or phone.
Description: Please reffer to the technical data sheet for more detail information for this item. Our dedicated team would be happy to assist you via live chat, email or phone.
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis. One version of pediatric acute myeloid leukemia is the result of a reciprocal translocation between chromosomes 11 and X, with the breakpoint associated with the genes encoding the mixed-lineage leukemia and septin 2 proteins. This gene encodes four transcript variants encoding three distinct isoforms. An additional transcript variant has been identified, but its biological validity has not been determined.
Description: This gene is a member of the septin family involved in cytokinesis and cell cycle control. This gene is a candidate for the ovarian tumor suppressor gene. Mutations in this gene cause hereditary neuralgic amyotrophy, also known as neuritis with brachial predilection. A chromosomal translocation involving this gene on chromosome 17 and the MLL gene on chromosome 11 results in acute myelomonocytic leukemia. Multiple alternatively spliced transcript variants encoding different isoforms have been described.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is highly expressed in brain and heart. Alternatively spliced transcript variants encoding different isoforms have been described for this gene. One of the isoforms (known as ARTS) is distinct; it is localized to the mitochondria, and has a role in apoptosis and cancer.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of GTPases. Members of this family are required for cytokinesis and the maintenance of cellular morphology. This gene encodes a protein that can form homo- and heterooligomeric filaments, and may contribute to the formation of neurofibrillary tangles in Alzheimer's disease. Alternatively spliced transcript variants have been found but the full-length nature of these variants has not been determined. [provided by RefSeq, Dec 2012]
Description: This gene encodes a guanine-nucleotide binding protein and member of the septin family of cytoskeletal GTPases. Septins play important roles in cytokinesis, exocytosis, embryonic development, and membrane dynamics. Multiple transcript variants encoding different isoforms have been found for this gene.
Description: This gene is a member of the septin gene family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is mapped to 22q11, the region frequently deleted in DiGeorge and velocardiofacial syndromes. A translocation involving the MLL gene and this gene has also been reported in patients with acute myeloid leukemia. Alternative splicing results in multiple transcript variants. The presence of a non-consensus polyA signal (AACAAT) in this gene also results in read-through transcription into the downstream neighboring gene (GP1BB; platelet glycoprotein Ib), whereby larger, non-coding transcripts are produced.
Description: This gene encodes a protein that is highly similar to the CDC10 protein of Saccharomyces cerevisiae. The protein also shares similarity with Diff 6 of Drosophila and with H5 of mouse. Each of these similar proteins, including the yeast CDC10, contains a GTP-binding motif. The yeast CDC10 protein is a structural component of the 10 nm filament which lies inside the cytoplasmic membrane and is essential for cytokinesis. This human protein functions in gliomagenesis and in the suppression of glioma cell growth, and it is required for the association of centromere-associated protein E with the kinetochore. Alternative splicing results in multiple transcript variants. Several related pseudogenes have been identified on chromosomes 5, 7, 9, 10, 11, 14, 17 and 19.
Description: This gene is a member of the septin family of nucleotide binding proteins, originally described in yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin function disturbs cytokinesis and results in large multinucleate or polyploid cells. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene.
Description: The CLCN5 gene encodes the chloride channel Cl-/H+ exchanger ClC-5. This gene encodes a member of the ClC family of chloride ion channels and ion transporters. The encoded protein is primarily localized to endosomal membranes and may function to facilitate albumin uptake by the renal proximal tubule. Mutations in this gene have been found in Dent disease and renal tubular disorders complicated by nephrolithiasis. Alternatively spliced transcript variants have been found for this gene.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is unconjugated.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 390.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 488.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 565.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 633.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 655.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 680.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to ATTO 700.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Alkaline Phosphatase.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to APC .
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to APC/Cy7.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Biotin.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 350.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 405.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 488.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Dylight 633.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to FITC.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to HRP.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to PE/ATTO 594.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to PerCP.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to RPE .
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is conjugated to Streptavidin.
Description: A polyclonal antibody for alpha Tubulin from Human. The antibody is produced in rabbit after immunization with human synthetic peptide of Human alpha-Tubulin. The Antibody is tested and validated for WB, ICC/IF assays with the following recommended dilutions: WB (1:1000); ICC/IF (1:100). This alpha Tubulin antibody is unconjugated.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.
Description: This MAb is specific to lambda light chain of immunoglobulin and shows no cross-reaction with lambda light chain or any of the five heavy chains. In mammals, the two light chains in an antibody are always identical, with only one type of light chain, kappa or lambda. The ratio of Kappa to Lambda is 70:30. However, with the occurrence of multiple myeloma or other B-cell malignancies this ratio is disturbed. Antibody to the lambda light chain is reportedly useful in the identification of leukemias, plasmacytomas, and certain non-Hodgkin's lymphomas. Demonstration of clonality in lymphoid infiltrates indicates that the infiltrate is malignant.